Package: rFSA 0.9.6

rFSA: Feasible Solution Algorithm for Finding Best Subsets and Interactions

Assists in statistical model building to find optimal and semi-optimal higher order interactions and best subsets. Uses the lm(), glm(), and other R functions to fit models generated from a feasible solution algorithm. Discussed in Subset Selection in Regression, A Miller (2002). Applied and explained for least median of squares in Hawkins (1993) <doi:10.1016/0167-9473(93)90246-P>. The feasible solution algorithm comes up with model forms of a specific type that can have fixed variables, higher order interactions and their lower order terms.

Authors:Joshua Lambert [aut, cre], Liyu Gong [aut], Corrine Elliott [aut], Sarah Janse [ctb]

rFSA_0.9.6.tar.gz
rFSA_0.9.6.zip(r-4.5)rFSA_0.9.6.zip(r-4.4)rFSA_0.9.6.zip(r-4.3)
rFSA_0.9.6.tgz(r-4.4-any)rFSA_0.9.6.tgz(r-4.3-any)
rFSA_0.9.6.tar.gz(r-4.5-noble)rFSA_0.9.6.tar.gz(r-4.4-noble)
rFSA_0.9.6.tgz(r-4.4-emscripten)rFSA_0.9.6.tgz(r-4.3-emscripten)
rFSA.pdf |rFSA.html
rFSA/json (API)

# Install 'rFSA' in R:
install.packages('rFSA', repos = c('https://joshuawlambert.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/joshuawlambert/rfsa/issues

On CRAN:

algorithmfsainteractionmodelsparallelstatisticalstatisticssubset

4.17 score 7 stars 21 scripts 157 downloads 19 exports 29 dependencies

Last updated 3 years agofrom:b0986bb253. Checks:OK: 7. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 05 2024
R-4.5-winOKNov 05 2024
R-4.5-linuxOKNov 05 2024
R-4.4-winOKNov 05 2024
R-4.4-macOKNov 05 2024
R-4.3-winOKNov 05 2024
R-4.3-macOKNov 05 2024

Exports:adj.r.squaredapressbdistfitmodelsFSAglmFSAint.p.vallist.criterionlmFSAmax_abs_residnextswappFSAQICu.geeglmr.squaredrmseswapstwFSAwhich.max.nawhich.min.na

Dependencies:clicpp11dplyrfansigenericsgluehashigraphlatticelazyevallifecyclemagrittrMatrixpillarpkgconfigpurrrR6RcppRcppParallelrlangrPrefstringistringrtibbletidyrtidyselectutf8vctrswithr