Package: rFSA 0.9.6
rFSA: Feasible Solution Algorithm for Finding Best Subsets and Interactions
Assists in statistical model building to find optimal and semi-optimal higher order interactions and best subsets. Uses the lm(), glm(), and other R functions to fit models generated from a feasible solution algorithm. Discussed in Subset Selection in Regression, A Miller (2002). Applied and explained for least median of squares in Hawkins (1993) <doi:10.1016/0167-9473(93)90246-P>. The feasible solution algorithm comes up with model forms of a specific type that can have fixed variables, higher order interactions and their lower order terms.
Authors:
rFSA_0.9.6.tar.gz
rFSA_0.9.6.zip(r-4.5)rFSA_0.9.6.zip(r-4.4)rFSA_0.9.6.zip(r-4.3)
rFSA_0.9.6.tgz(r-4.4-any)rFSA_0.9.6.tgz(r-4.3-any)
rFSA_0.9.6.tar.gz(r-4.5-noble)rFSA_0.9.6.tar.gz(r-4.4-noble)
rFSA_0.9.6.tgz(r-4.4-emscripten)rFSA_0.9.6.tgz(r-4.3-emscripten)
rFSA.pdf |rFSA.html✨
rFSA/json (API)
# Install 'rFSA' in R: |
install.packages('rFSA', repos = c('https://joshuawlambert.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/joshuawlambert/rfsa/issues
algorithmfsainteractionmodelsparallelstatisticalstatisticssubset
Last updated 3 years agofrom:b0986bb253. Checks:OK: 7. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 05 2024 |
R-4.5-win | OK | Nov 05 2024 |
R-4.5-linux | OK | Nov 05 2024 |
R-4.4-win | OK | Nov 05 2024 |
R-4.4-mac | OK | Nov 05 2024 |
R-4.3-win | OK | Nov 05 2024 |
R-4.3-mac | OK | Nov 05 2024 |
Exports:adj.r.squaredapressbdistfitmodelsFSAglmFSAint.p.vallist.criterionlmFSAmax_abs_residnextswappFSAQICu.geeglmr.squaredrmseswapstwFSAwhich.max.nawhich.min.na
Dependencies:clicpp11dplyrfansigenericsgluehashigraphlatticelazyevallifecyclemagrittrMatrixpillarpkgconfigpurrrR6RcppRcppParallelrlangrPrefstringistringrtibbletidyrtidyselectutf8vctrswithr